Combining a Multi-document Summarization System with a Genetic Algorithm
نویسندگان
چکیده
In this paper, we present a combination of a multi-document summarization system with a genetic algorithm. We first introduce a novel approach for automatic summarization. CBSEAS, the system which implements this approach, integrates a new method to detect redundancy at its very core in order to produce summaries with a good informational diversity. However, the evaluation of our system at TAC 2008 —Text Analysis Conference— revealed that system adaptation to a specific domain is fundamental to obtain summaries of an acceptable quality. The second part of this paper is dedicated to a genetic algorithm which aims to adapt our system to specific domains. We present its evaluation by TAC 2009 on a newswire articles summarization task and show that this optimization is having a great influence on both human and automatic evaluations.
منابع مشابه
A survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملMulti-document Summarization System: Using Fuzzy Logic and Genetic Algorithm
In the recent times, the requirement for generation of multi-document summary has gained a lot of attention among the researchers. Mostly, the text summarization technique uses the sentence extraction technique where the salient sentences in the multiple documents are extracted and presented as a summary. In our proposed system, we have developed a sentence extraction based automatic multi-docu...
متن کاملText Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کاملQuery-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...
متن کاملAutomated Multi-document Summarization in NeATS
This paper describes the multi-document text summarization system NeATS. Using a simple algorithm, NeATS was among the top two performers of the DUC-01 evaluation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016